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Kinetics of ballistic annihilation and branching
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We consider a one-dimensional model consisting of an assembly of two-velocity particles moving freely
between collisions. When two particles meet, they instantaneously annihilate each other and disappear from the
system. Moreover, each moving particle can spontaneously generate an offspring having the same velocity as
its mother with probability 12q. This model is solved analytically in the mean-field approximation and
studied by numerical simulations. It is found that forq51/2 the system exhibits a dynamical phase transition.
For q,1/2, the slow dynamics of the system is governed by the coarsening of clusters of particles having the
same velocities, while forq.1/2 the system relaxes rapidly towards its stationary state characterized by a
distribution of small cluster sizes.@S1063-651X~99!00501-2#

PACS number~s!: 82.20.Mj, 05.20.Dd
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I. INTRODUCTION

Ballistically controlled reactions provide simple exampl
of nonequilibrium systems with complex kinetics and ha
recently attracted a lot of interest@1–9#. They consist of an
assembly of particles moving freely between collisions w
given velocities. When two particles meet, they instan
neously annihilate each other and disappear from the sys

Depending on the initial velocity distribution, two class
of asymptotic states have been observed in one-dimens
systems. In general, for continuous initial velocity distrib
tion @3,10#, as well as for some special case of discrete
locity distribution ~symmetric two-velocity distribution
@1,2,5# or symmetric trimodal velocity distribution with a
sufficiently small fraction of immobile particles@6,7#!, the
steady state turns out to be empty and it is approached a
braically in time. The dynamical exponent characterizing
time decay depends on the initial velocity distribution and
is still not completely clear how to characterize the univ
sality classes for this problem@10#. On the contrary, for some
discrete velocity distribution, the stationary state may not
empty, but may contain particles moving all with the sam
velocity ~for example nonsymmetric bimodal velocity distr
bution @1,5# or a trimodal velocity distribution with more
than 25% of particles initially at rest@6,7#!. This noninteract-
ing state is generally approached with an exponentially
decay.

A richer behavior can be expected in a system with,
opposition to the ballistic annihilation case, an interact
steady state. This can be achieved by constantly bring
new particles in the system by some suitable mechanism
possibility is to allow branching processes: ballistically mo
ing particles can spontaneously generate, with a gi
branching rate, some offsprings. Accordingly, one speak
ballistic branching annihilation.

The problem of branching annihilation has been recen
PRE 591063-651X/99/59~1!/126~9!/$15.00
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studied in the framework of a diffusive dynamics@11,12#.
The simplest example of such a system would be one wi
single species of particleA, undergoing diffusive behavior
single-particle annihilationA→B, and branchingA→2A.
There is always a trivial absorbing state, with no particl
For sufficiently low branching rate, this is the only stationa
state, but for larger values of this rate, another nontriv
‘‘active’’ stationary state appears. This stationary-state ph
transition belongs to the directed percolation universa
class@13#. A slightly more complicated class of model a
reaction-diffusion systems with the underlying reaction p
cesses 2A→B andA→(m11)A, with m even. It turns out
that for these models the critical exponents are not the o
of directed percolation but belong to a new universality cla
@11,12# characterized by branching and annihilating wa
with an even number of offsprings. The constraint of loc
‘‘parity’’ conservation is the reason for the existence of th
new universality class.

Our aim here is to study the problem of ballistic branc
ing annihilation~BBA! in one dimension for which interest
ing new properties can be foreseen. The paper is organ
as follows. In Sec. II, the BBA model is defined. The exa
dynamical equations of motion are derived for the on
dimensional case. In Sec. III, the dynamics of the mode
studied within a mean-field-like approximation. In particula
the phase diagram of the steady state is established in t
of the different parameters of our model. In this approxim
tion, the steady state is always approached exponent
fast. Section IV is devoted to numerical simulations of t
one-dimensional model. It is shown that fluctuations pla
crucial role. Indeed, as in the mean-field approximation
phase transition occurs when the probability that the o
spring takes the velocity of its mother isq51/2; however,
for q,1/2 the dynamics is governed by the coarsening
clusters of particles having the same velocity, and the sys
approaches a completely filled stationary state with a pow
126 ©1999 The American Physical Society
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PRE 59 127KINETICS OF BALLISTIC ANNIHILATION AND BRANCHING
law decay. Forq.1/2, there is no coarsening and the syst
relaxes rapidly towards a nonfilled stationary state. Fina
the results are discussed in Sec. V.

II. THE MODEL

We shall first define precisely the BBA model studied a
second derive the corresponding equations of motion.

A. Definition of the model

We consider a one-dimensional system composed of
ticles of sizes initially uniformly randomly distributed in
space. Moreover, att50, the velocities of the particles ar
random independent variables distributed with the symme
bimodal distribution:

P~v !5
1

2
@d~v2c!1d~v1c!#. ~1!

The dynamics consists of two mechanisms:~a! The ballistic
annihilation: Two particles making contact~with opposite
velocities! disappear instantaneously.~b! The branching:
during the time interval@ t,t1dt#, the following branching
processes take place:~i! A particle with coordinates~position
and velocity! (x,c) produces with probabilityp(12q)dt a
pair of particles with coordinates (x2s,c) and (x,c); ~ii ! A
particle with coordinates (x,c) produces with probability
pqdt a pair of particles with coordinates (x2s,2c) and
(x,c); ~iii ! A particle with coordinates (x,2c) produces
with probability p(12q)dt a pair of particles with coordi-
nates (x,2c) and (x1s,2c); ~iv! A particle with coordi-
nates (x,2c) produces with probabilitypqdt a pair of par-
a

n
-
o

,

r-

ic

ticles with coordinates (x,2c) and (x1s,c). ~The particular
choice of the position of the newly created particle has b
made in order that, independent of its velocity, a child can
collide with its mother at birth.! Thus the parameter 0<p
<` characterizes the overall branching rate, while the
rameter 0<q<1 characterizes the probability that the of
spring has a velocity opposed to that of its mother. The p
ticular case p50 corresponds to the pure ballist
annihilation problem previously studied@1,2,5,6#.

B. Exact equations of motion

We can now derive the equations of motion describing
dynamics of the system. In the particular casep50, a kinetic
equation for the two-particle conditional distribution of nea
est neighbors was derived as a rigorous consequence o
dynamics of ballistic annihilation@5,6#. This equation com-
pletely described the evolution of the system when initia
higher-order conditional distributions factorized into pro
ucts of two-particle ones. It was then possible to extract
actly and analytically the long time behavior of the partic
density for several velocity distributions. Unfortunately, th
property is no longer valid in the case with branching. Ha
ing not been able to find an observable in which one is a
to reproduce this exact closure, one has to face the u
problem of dealing with a complete hierarchy of coupl
equations@14#. It seems thus hopeless to find an exact a
lytical solution to these equations. Accordingly we shall on
write the equation for the one-particle density distributi
r1(x,v;t). In Sec. III, this equation will be solved using
mean-field approximation.

A careful bookkeeping of the possible dynamical pr
cesses leads to the following equations:
~] t1c]x!r1~x,c;t !522cr2~x,c;x1s,2c;t !1pqS r1~x2s,2c;t !2 (
v56c

E
0

s

dy r2~x2s,2c;x1y,v,t ! D
1p~12q!S r1~x1s,c;t !2 (

v56c
E

0

s

dy r2~x2y,v;x1s,c;t ! D , ~2!

and

~] t2c]x!r1~x,2c;t !522cr2~x,c;x1s,2c;t !1pqS r1~x1s,2c;t !2 (
v56c

E
0

s

dy r2~x2y,v;x1s,c;t ! D
1p~12q!S r1~x2s,2c;t !2 (

v56c
E

0

s

dy r2~x2s,2c;x1y,v;t ! D , ~3!
s
r
ious
wherer2(x1 ,v1 ;x2 ,v2 ;t) is the joint two-particle density to
find a particle in the state (x1 ,v1) simultaneously with an-
other in the state (x2 ,v2) at time t.

The right-hand side of Eq.~2! can be interpreted in the
following way: the first term describes the annihilation of
particle (x,c) with a particle of opposite velocity. It is given
by the product of the density of a collision configuratio
@sr2(x,c;x1s,2c,t)# with the frequency of such an en
counter (2c/s). The second term describes the branching
 f

a particle of velocity2c, at positionx2s, giving birth to a
particle of velocity1c at positionx. This is only possible if
no other particles are present in the interval@x,x1s# ~oth-
erwise there will be an overlap between two particles! and it
happens with the ratepq. Finally, the third term describe
the creation with ratep(12q) of a particle whose mothe
has the same velocity. The same restriction as in the prev
case applies.

One can in principle write the equation of motion forr2
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128 PRE 59REY, DROZ, AND PIASECKI
along the same lines. However, we shall not give here
cumbersome equation, as we are not going to use it.

For simplicity, we shall only consider a spatially hom
geneous system. We can thus writer1(x,v;t)5r1(v,t) and
r2(x1 ,v1 ;x2 ,v2 ;t)5r2(x12x2 ,v1 ;0,v2 ;t). Introducing
then the observableC(t)[r1(c,t)2r1(2c,t), one easily
shows that it is an exactly conserved quantity whenq
51/2. This feature reflects the particular choice of ru
which is precisely symmetric whenq51/2. As a conse-
quence, one expects our model to exhibit a particular beh
ior at this point.

III. MEAN-FIELD ANALYSIS

A first attempt to obtain information about our model is
apply a mean-field approximation on Eqs.~2! and ~3!. One
then assumes the following factorization:

r2~x1 ,v1 ;x2 ,v2 ;t !5r1~x1 ,v1 ;t !r1~x2 ,v2 ;t !

5r1~v1 ,t !r1~v2 ,t ! ~4!

~the last equality holds for a spatially homogeneous syste!.
It is then suitable to introduce in addition to the variab

C the second variable,

F~ t ![r1~c,t !1r1~2c,t !. ~5!

Equations~2! and ~3! lead to

dF

dt
5p~12sF!F2c~F22C2! ~6!

and

dC

dt
5p~122q!~12sF!C. ~7!

The formal solution of this last equation is

C~ t !5C~0!expFp~122q!S t2sE
0

t

dt F~t! D G , ~8!

As before, one sees that the valueq51/2 plays a special role
Indeed, two regimes have to be distinguished.

~i! For 0<q,1/2: the exponential term diverges unle
(12sF)→0 ast→`. Thus a possible stationary solution

Fs5
1

s
, Cs

25
1

s2
. ~9!

In the particular caseq50, the time-dependent solution ca
be obtained explicitly as shown in the Appendix. Fort
→`, one recovers the above stationary solution.

~ii ! For 1/2,q<1: in this case, a possible stationary s
lution is

Cs50, Fs5
1

s
~11c/ps!21. ~10!

It is straightforward to verify that the above stationary so
tions are stable and are approached exponentially in tim
is

,

v-

-

-

Moreover, whenq51/2 the complete time dependent s
lution can be obtained. From Eq.~7!, one indeed finds
C(t)5const5C0 , and thus Eq.~6! becomes

dF

dt
5pF2~c1ps!F21cC0

2 , ~11!

whose solution reads

F~ t !5
p

2~c1ps!
1

gA cosh~At!1A~c1ps!sinh~At!

A cosh~At!1g~c1ps!sinh~At!
,

~12!

with A5p2/41c(c1ps)C0
2 and g5F(0)2p/@2(c

1ps)#. The stationary state is then given byCs5C0 and

Fs~q51/2!5@p1Ap214c~c1ps!C0
2#/~c1ps!.

~13!

Here again, one sees from Eq.~12! that the steady state i
approached in an exponential way. As already noted,C(t) is
an exactly conserved quantity forq51/2.

The mean-field stationary phase diagram is shown in F
1. The stationary valueFs is plotted againstq for a fixed
value of p5” 0. The interesting feature is the presence o
gapD(p) for q51/2 given by

D~p!5
1

sS 12
1

11c/ps D . ~14!

D(p) decreases asp increases. Whenq,1/2, Fs51/s for
all values ofp ~completely filled state!, while for q.1/2, Fs
increases monotonically withp. The dependence is linear fo
small p, but Fs→1/s whenp→`.

IV. NUMERICAL SIMULATIONS

In view of the situation whenp50 @1,2,5#, one can an-
ticipate that the fluctuations will also play an important ro
in the case with branching. One way to deal with the co
plete problem, including fluctuations, is to perform nume
cal simulations.

The simulations were performed for a one-dimensio
periodic lattice with typically 217 sites. The velocity of each

FIG. 1. Mean-field phase diagram: the stationary value of
averaged densityFs is plotted againstq for a fixed value ofp.
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PRE 59 129KINETICS OF BALLISTIC ANNIHILATION AND BRANCHING
particle was drawn from a symmetric bimodal distributio
However, on computational grounds, the particle velocit
were chosen to be (0,c8) ~with c8.0). The results for our
model defined in Sec. II can be recovered by performin
simple Galilean transformation and settingc5c8/2. The par-
ticle sizes is the lattice spacing and the discretized time s
is given byt5s/c8.

The algorithm used to simulate the dynamics is the f
lowing. During one time stept, the following three pro-
cesses occur sequentially.

~1! Ballistic motion: independent of the occupation sta
of the sites, the particles with velocityc8 move one site to
the right.

~2! Annihilation: two particles located on the same s
disappear.

~3! Branching: for each remaining particle, one dra
two random numbers,r p andr q , uniformly distributed in the
interval @0,1#. One offspring particle is added to the le
~right! nearest neighbor of a particle with velocityc8 (0) if
the site is empty and ifr p is less than a given valuep̃.
Hence,p̃ is the probability of branching. This new partic
takes the velocity of its mother with a certain probability
2q, i.e., if r q.q ~and the other velocity otherwise!. If two
particles are created on the same site~thus born from two
different mothers!, they annihilate instantaneously.

For each of the above steps, the sites were updated sim
neously. The simulations were run on a Connection Mach
CM-200 and the data averaged over 10 independent rea
tions. The mean initial density for all the simulations w
0.5, with, on average, the same densities of both kinds
particles. We have also shown that our results obtained f
lattice of 217 sites were free of finite-size effects.

Note that when a particle branches, it can create at m
one particle during a time stept. As a consequence, thi
limits the value ofp that can be explored through the sim
lations. Indeed, the branching ratep is related top̃ via

p̃5pt. ~15!

Thus using the definition oft andc8, one finds

ps

c
52p̃. ~16!

p̃ being a probability, the adimensional branching rateps/c
can only take values between 0 and 2.

We can now discuss the numerical data obtained using
above algorithm. Two kinds of quantities have been inve
gated: first, the time-dependent density with particular e
phasis on the stationary states and the way these statio
states are approached; second, a more microscopic qua
namely the time-dependent cluster-size distributionP( l ,t) in
the system and some of its moments. These quantities
well suited to describe the coarsening process present in
system.
.
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As in the mean-field approach and as expected from
last remark of Sec. II, the valueq51/2 turns out to play a
particular role and three regimes have to be distinguishe

~i! For 0<q,1/2: The time evolution of the particle den
sity F(t) is shown in Fig. 2 for several values ofp̃. Clearly,
the system reaches a stationary stateFs51/s in agreement
with the mean-field prediction. However, as shown in Fig.
the stationary state is approached asFs2F(t);t21/2. This
power law is established after a crossover time roughly p
portional to 1/p.

FIG. 2. Time evolution of the particle densitysF(t) as a func-

tion of time t for q50.1 and several values ofp̃.

FIG. 3. sFs2sF(t) versust in a double logarithmic scale, fo

q50.1 and several values ofp̃. For comparison, the full line rep
resentst21/2. This decay is established after a crossover time wh

behaves ast/ p̃.
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130 PRE 59REY, DROZ, AND PIASECKI
~ii ! For 1/2,q<1: The time evolution of the particle
densityF(t) is shown in Fig. 4 for several values ofp̃. As
depicted in Fig. 5, the stationary value of the density depe
both onp̃ andq. For p̃,0.1, it is well fitted by

Fs~ p̃,q!' p̃ exp~0.55/q!. ~17!

Moreover, forp̃ large enoughFs is not increasing monotoni
cally as a function ofp̃, but Fs exhibits a maximum and
then slightly decreases asp̃ increases. As shown in Fig. 6

FIG. 4. Time evolution of the particle densitysF(t) as a func-

tion of time t for q50.9 and several values ofp̃. The stationary

state is reached after a time of order 10t/ p̃.

FIG. 5. The stationary values of the averaged densitysFs are

plotted againstp̃, for several values ofq.1/2, obtained by numeri-
cal simulations.
s

the stationary state is approached in an exponential way
cording toFs2F(t);exp(2Ap̃t), whereA may depend on
q.

~iii ! The limit caseq51/2 is more difficult to investigate
due to the slow decay towards the stationary state. In fact
p̃.0.3, there is evidence that the stationary state is co
pletely filled, i.e., Fs51/s. For smaller values ofp̃ the
simulations do not allow us to draw any conclusions,
shown in Fig. 7. Nevertheless, forq,1/2, one hasFs

FIG. 6. Semilogarithmic plot ofsF(t)2sFs versust for q

50.9 andp̃50.01. The exponential approach towards the ste
state is established fort/t.250.

FIG. 7. Time evolution of the particle densitysF(t) as a func-

tion of time t for q50.5 and several values ofp̃. For small values

of p̃ ~less than 0.3!, we are unable to extract the steady-state d
sity, for CPU reasons.
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PRE 59 131KINETICS OF BALLISTIC ANNIHILATION AND BRANCHING
51/s for all values ofp̃ while for q.1/2, Eq.~17! shows
that, at least for smallp̃, Fs5” 1/s. Thus for smallp̃, Fs has
a jump atq51/2, and we believe that such a jump will b
present for all finite values ofp.

We can now consider the properties of the clusters pre
in the system at a given time. The qualitative situation is w
illustrated by the two snapshots in Fig. 8. They represent
time evolution of a 512-site system during 1024 iteratio
Moreover, a change of reference frame has been perfor
such that the particle velocities appear to be6c. Depending
on q, one observes totally different pictures. In the ca
p̃50.7,q50.1 @Fig. 8~a!#, large clusters~of similar particles!
are present. They are separated by two types of interfa
vertical ones~which are stable! and rough ones. The dynam
ics of the system is totally governed by the random walks
the rough interfaces. During the time evolution, one rou
interface may collide with a stable interface leading to
coalescence of two clusters into a large one. In the c
p̃50.7,q50.9 @Fig. 8~b!#, the sizes of the clusters are rath
small and there are no stable interfaces. The dynamics is
different type.

A more quantitative description is given by the investig

FIG. 8. Time evolution~vertical axes! of the configurations for a
chain of 512 sites~the initial density is approximately one-half! and
for 1024 time iterations. The white pixels indicate sites witho
particle, the gray ones sites with a particle towards the right, and
black ones sites with a particle moving towards the left.~a! is for

p̃50.7 andq50.9, while ~b! is for p̃50.7 andq50.1.
nt
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tion of the time-dependent cluster-size distributionP( l ,t). In
the domain 0<q,1/2, where coarsening is observed, o
expects@15# that P( l ,t) will obey a scaling form:

P~ l ,t !;t2aP~ l t 2b!. ~18!

In Fig. 9, we plot the scaling function obtained by the co
lapse of the data forp̃50.7,q50.1, with a51 and b
50.5. Although the plot is very noisy, one still notes that t
scaling functionP(z) has a very particular shape, with
sharp maximum atz5zmax. The value ofzmax increases
slowly with q, going from 0.4 for q50.1 to 1.2 for q
50.4.

A better way to extract the exponentsa andb is to con-
sider thenth-order moments of the distribution defined as

^ l n&5

E
s

`

dl l nP~ l ,t !

E
s

`

dl P~ l ,t !

, ~19!

which according to the scaling form given by Eq.~18! should
behave as

^ l n&;tan5tnb, ~20!

while

E
s

`

dl P~ l ,t !;t2a1b. ~21!

Thus, the above two relations allow us to determine the
ponentsa and b. The values ofan for n51, . . . ,6 are
shown on Fig. 10 forp50.7, q50.1. A good fit is obtained
for b50.4860.02 anda50.9660.04, in very good agree
ment with our collapsed plot. By repeating our analysis

t
e

FIG. 9. Scaling form of the cluster-size distribution forp̃
50.7,q50.1. P( l ,t)ta is plotted versusl t 2b for a51 and b
50.5.
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132 PRE 59REY, DROZ, AND PIASECKI
other values ofq ~namely, 0.2, 0.3, and 0.4!, the same values
for the exponents fit reasonably well the data.

For q51/2, the different moments of the cluster-size d
tribution area150.33, a250.96, a351.60, a452.22, a5
52.82, anda653.40. These exponents are of the forman
520.2610.61n which is not compatible with the relatio
~20!. This probably shows that the simulations have not
reached the true asymptotic regime. Moreover, as show
Fig. 11,P( l ,t) is of the form

P~ l ,t !;t21/3l 24/3, ~22!

over two decades in the variablel . Note that Eq.~22! cannot
be valid for arbitrarily largel , because the moments o
P( l ,t) diverge with the upper limit of integration.

Finally, in the domain 1/2,q<1, where no coarsening i
observed, the system approaches very rapidly its statio
state and no dynamical scaling has been found for the clu
distribution. However, in the stationary state, the cluster d
tribution takes the form

P~ l !5C1exp~2C2l !, ~23!

whereC1 andC2 are two constants.

V. INTERPRETATION OF THE RESULTS
AND CONCLUSIONS

The first interesting point is the particular role played
the valueq51/2. As already mentioned in Sec. II, forq
51/2, one notes the presence of an extra conservation la
the system. The difference between the average local de
of particles with positive and negative velocities is stric
zero. It is well known that conservation law has a great

FIG. 10. Exponentan ~open circles! of the nth moment of the

cluster distribution function forn50, . . . ,6 and p̃50.7,q50.1.
The line is the fitan50.0110.48n.
-

t
in

ry
ter
-

in
ity

-

fluence on the dynamics of nonequilibrium statistical s
tems. Accordingly, one may expect that the dynamics inq
51/2 is particular.

In view of the scaling properties of the problem, it may
useful to think about it in terms of a dynamical renormaliz
tion group. Based on the results of both the mean-field
proximation and the numerical simulations, one is led to c
jecture the presence of three fixed points in this system
unstable ‘‘critical’’ fixed point atq51/2 and two attractive
fixed points atq50 andq51.

Whenq,1/2, the branching processes favors the app
tion of a pair of consecutive particles with the same velo
ties and the dynamics is governed by the attractive fix
point atq50. Large particle clusters with opposite velocitie
are formed during the time evolution and two kinds of inte
faces are present in the system@see Fig. 8~a!#. First, let us
consider the interface between two clusters of colliding p
ticles and call this type of interfaceI 1 . Such an interface ha
a very long life. Indeed, the probability that a vacan
present at one of the extremities of a cluster of sizeL
traverses the cluster and perturbates the interface is of
order of (12p)L. Thus, an interfaceI 1 is very stable in the
long time limit where the system is made up of large clu
ters. The second type of interface, calledI 2 , separates non
colliding clusters. Thus it does not necessarily have a o
site extension, but it can be wider. Hence, its behavior
more subtle. Three different regimes may be considered.
simplest case to discuss is whenps/c.1. In this case, the
interface I 2 is typically formed by only one empty lattice
site, whose dynamics is diffusive. Indeed, one can show
both boundaries of an interfaceI 2 perform a Brownian mo-
tion. Moreover, whenps/c.1, this random walk is biased
so that both boundaries tend to come closer together.
sufficiently long time, the initial gap separating two nonco
liding clusters will shrink to one single site, which will per
form a random walk. Eventually, this hole will encounter

FIG. 11. Scaling form of the cluster-size distribution forp̃
50.7,q50.5. P( l ,t)t1/3 is plotted versusl in a double logarithmic
scale. The full line representsl 24/3.
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I 1 interface, permitting the coalescence of two clusters int
larger one. The random walk aspect of this dynamics is
sponsible for the slow approach towards the stationary s
~in t21/2) observed in the simulations. Whenps/c51, the
boundaries of an interfaceI 2 both perform an unbiased ran
dom walk. Accordingly, the initial gap between two nonco
liding clusters will not, on average, vary. However, becau
of the BBA dynamics, this gap will eventually shrink to
single site, either through the creation of a cluster inside
gap whenqÞ0, or through the coalescence of two interfac
Thus the previous argument holds. Finally, whenps/c,1,
the situation is similar: although the boundaries ofI 2 per-
form a biased random walk which tends to increase the s
ration between the two noncolliding clusters, the coalesce
of two interfaces or a creation of a new cluster inside the
~if qÞ0) will fill up this space in a more efficient way.

Eventually, the stationary state is completely filled, on
one cluster remains and the annihilation process is no lon
in effect. For values ofq not too far from 1/2, this
asymptotic behavior will shows up only for very long time
Accordingly, the results of the~finite time! numerical simu-
lations may still be affected by the properties of the critic
fixed point atq51/2, and the dynamics will exhibit som
crossover behavior.

In the situationq.1/2, a majority of pairs of particles
with opposite velocities are created during branching. Due
the annihilation processes, those particles will prevent
formation of large clusters of particles. One may anticip
that the long time dynamics is governed by the other attr
tive fixed point corresponding toq51. The dynamics is no
longer governed by the coarsening mechanism but only
the dynamics of small clusters, hence fast~exponential-like!
relaxation occurs. Depending upon the value ofp, there is a
more or less important fraction of empty sites~or holes! into
the system. The presence of these two different dynam
regimes explains the jump observed in the stationary den
at q51/2.

This paper shows once again that the mean-field res
generally do not hold for low-dimensional systems. Wher
the mean-field approximation predicts the exact critical va
for q ~because the mean-field equation forC is exact when
q51/2) and theright stationary value of the density whe
q,1/2, it is unable to give satisfactory results for the dens
stationary value forq.1/2 ~see Figs. 1 and 5!. Unsurpris-
ingly, the mean-field approximation is also unable to pred
the power-law approach to the stationary state whenq
,1/2, which is obviously governed by fluctuations. Mo
surprisingly, its prediction of an exponentially fast approa
towards the steady state whenq.1/2 is ~qualitatively! well
verified. However, to better understand this problem,
would be useful to be able to find an exact analytical solut
at least for the three fixed-point cases (q50, 1/2, and 1 for
arbitrary values ofp) as a support to the above qualitativ
picture. Unfortunately, we were not able until now to fin
such exact solutions.

In conclusion, one sees that this simple BBA proble
with one offspring exhibits already a very rich behavior. T
case with two or more offsprings is a completely open qu
tion.
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APPENDIX

In this Appendix, we give an explicit solution to th
mean-field equations~5! and~6! for the caseq50. Equations
~5! and ~6! lead to

C
dF

dt
2F

dC

dt
52cC~F22C2!. ~A1!

By multiplying Eq. ~A1! by C22, one finds

d

dtS F

C D52cCF S F

C D 2

21G . ~A2!

Let us introducex(t)5F(t)/C(t). Equation~A2! becomes

1

x221

d

dt
x52cC, ~A3!

whose solution is

x~ t !5

11x~0!1@x~0!21#expS 2cE
0

t

C~t!dt D
11x~0!2@x~0!21#expS 2cE

0

t

C~t!dt D .

~A4!

If x(0)561, thenx(t)561 and one findsC(t)56F(t)
for all times, whereC(t) obeys

dC

dt
5p~17sC!C, ~A5!

whose solution is

C~ t !2156s1exp~2pt!@C~0!217s#. ~A6!

Note that in these particular cases, only particles with vel
ity 1c ~or 2c) are present in the system at all times.

If x(0)5” 1, one finds
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dC

dt
5p~12sF!C5pH 12F 11x~0!1@x~0!21#expS 2cE

0

t

C~t!dt D
11x~0!2@x~0!21#expS 2cE

0

t

C~t!dt D G sCJ C. ~A7!

As uC(t)u is a nondecreasing function of time, whent→`, the square brackets in Eq.~A7! approach61 depending on the
sign of x(0). Thus, Eq.~A7! reduces to Eq.~A5!.
ys

ys
a-
,

@1# Y. Elskens and H. L. Frisch, Phys. Rev. A31, 3812~1985!.
@2# J. Krug and H. Spohn, Phys. Rev. A38, 4271~1988!.
@3# E. Ben-Naim, S. Redner, and F. Leyvraz, Phys. Rev. Lett.70,

1890 ~1993!.
@4# P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. E51,

3977 ~1995!.
@5# J. Piasecki, Phys. Rev. E51, 5535~1995!.
@6# M. Droz, P.-A. Rey, L. Frachebourg, and J. Piasecki, Ph

Rev. Lett.75, 160 ~1995!.
@7# M. Droz, P.-A. Rey, L. Frachebourg, and J. Piasecki, Ph

Rev. E51, 5541~1995!.
@8# J. Piasecki, P.-A. Rey, and M. Droz, Physica A229, 515

~1996!.
@9# P.-A. Rey, M. Droz, and J. Piasecki, Eur. J. Phys.18, 213

~1997!.
.

.

@10# P.-A. Rey, M. Droz, and J. Piasecki, Phys. Rev. E57, 138
~1998!.

@11# J. L. Cardy and U. C. Ta¨uber, Phys. Rev. Lett.77, 4780
~1996!.

@12# J. L. Cardy and U. C. Ta¨uber, J. Stat. Phys.90, 1 ~1998!.
@13# P. Grassberger and K. Sundermeyer, Phys. Lett.77B, 220

~1978!; J. L. Cardy and R. L. Sugar, J. Phys. A13, L423
~1980!.

@14# H. J. Kreutzer,Nonequilibrium Thermodynamics and Its St
tistical Foundations ~Oxford Science Publication, Oxford
1981!.

@15# L. Frachebourg and P. L. Krapivsky, Phys. Rev. E55, 252
~1997!.


