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We consider a one-dimensional model consisting of an assembly of two-velocity particles moving freely
between collisions. When two particles meet, they instantaneously annihilate each other and disappear from the
system. Moreover, each moving particle can spontaneously generate an offspring having the same velocity as
its mother with probability +q. This model is solved analytically in the mean-field approximation and
studied by numerical simulations. It is found that épr 1/2 the system exhibits a dynamical phase transition.
Forq<1/2, the slow dynamics of the system is governed by the coarsening of clusters of particles having the
same velocities, while fog>1/2 the system relaxes rapidly towards its stationary state characterized by a
distribution of small cluster size§S1063-651X99)00501-3

PACS numbsgs): 82.20.Mj, 05.20.Dd

[. INTRODUCTION studied in the framework of a diffusive dynamif1,12.
The simplest example of such a system would be one with a

Ballistically controlled reactions provide simple examplessingle species of particlé, undergoing diffusive behavior,
of nonequilibrium systems with complex kinetics and havesingle-particle annihilatio’A— &, and branchingA— 2A.
recently attracted a lot of interegt—9]. They consist of an There is always a trivial absorbing state, with no particles.
assembly of particles moving freely between collisions withFor sufficiently low branching rate, this is the only stationary
given velocities. When two particles meet, they instantastate, but for larger values of this rate, another nontrivial
neously annihilate each other and disappear from the systerfactive” stationary state appears. This stationary-state phase

Depending on the initial velocity distribution, two classestransition belongs to the directed percolation universality
of asymptotic states have been observed in one-dimensionalass[13]. A slightly more complicated class of model are
systems. In general, for continuous initial velocity distribu- reaction-diffusion systems with the underlying reaction pro-
tion [3,10], as well as for some special case of discrete vecesses 2—J andA— (m+ 1)A, with meven. It turns out
locity distribution (symmetric two-velocity distribution that for these models the critical exponents are not the ones
[1,2,5 or symmetric trimodal velocity distribution with a of directed percolation but belong to a new universality class
sufficiently small fraction of immobile particlel6,7]), the [11,17 characterized by branching and annihilating walks
steady state turns out to be empty and it is approached algedth an even number of offsprings. The constraint of local
braically in time. The dynamical exponent characterizing the‘parity” conservation is the reason for the existence of this
time decay depends on the initial velocity distribution and itnew universality class.
is still not completely clear how to characterize the univer- Our aim here is to study the problem of ballistic branch-
sality classes for this proble[a0]. On the contrary, for some ing annihilation(BBA) in one dimension for which interest-
discrete velocity distribution, the stationary state may not béng new properties can be foreseen. The paper is organized
empty, but may contain particles moving all with the sameas follows. In Sec. Il, the BBA model is defined. The exact
velocity (for example nonsymmetric bimodal velocity distri- dynamical equations of motion are derived for the one-
bution [1,5] or a trimodal velocity distribution with more dimensional case. In Sec. lll, the dynamics of the model is
than 25% of particles initially at re§6,7]). This noninteract-  studied within a mean-field-like approximation. In particular,
ing state is generally approached with an exponentially fasthe phase diagram of the steady state is established in terms
decay. of the different parameters of our model. In this approxima-

A richer behavior can be expected in a system with, intion, the steady state is always approached exponentially
opposition to the ballistic annihilation case, an interactingfast. Section 1V is devoted to numerical simulations of the
steady state. This can be achieved by constantly bringingne-dimensional model. It is shown that fluctuations play a
new particles in the system by some suitable mechanism. Arucial role. Indeed, as in the mean-field approximation, a
possibility is to allow branching processes: ballistically mov-phase transition occurs when the probability that the off-
ing particles can spontaneously generate, with a givespring takes the velocity of its mother = 1/2; however,
branching rate, some offsprings. Accordingly, one speaks dfor q<1/2 the dynamics is governed by the coarsening of
ballistic branching annihilation. clusters of particles having the same velocity, and the system

The problem of branching annihilation has been recentlyapproaches a completely filled stationary state with a power-
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law decay. Fog>1/2, there is no coarsening and the systenticles with coordinatesx, —c) and x+ o,c). (The particular
relaxes rapidly towards a nonfilled stationary state. Finallychoice of the position of the newly created particle has been

the results are discussed in Sec. V.

Il. THE MODEL

made in order that, independent of its velocity, a child cannot
collide with its mother at birth. Thus the parameter<9p

<w characterizes the overall branching rate, while the pa-
rameter G=q=<1 characterizes the probability that the off-

We shall first define pl’eCisely the BBA model studied andspring has a Velocity Opposed to that of its mother. The par-

second derive the corresponding equations of motion.

A. Definition of the model

We consider a one-dimensional system composed of par-

ticles of sizeo initially uniformly randomly distributed in

ticular case p=0 corresponds to the pure ballistic
annihilation problem previously studi¢d,2,5,§.

B. Exact equations of motion

We can now derive the equations of motion describing the

space. Moreover, at=0, the velocities of the particles are dynamics of the system. In the particular case0, a kinetic
random independent variables distributed with the symmetriequation for the two-particle conditional distribution of near-

bimodal distribution:
1
P(v)=§[5(v—c)+5(v+c)]. (D)

The dynamics consists of two mechanisr@: The ballistic
annihilation: Two particles making conta¢ivith opposite
velocitieg disappear instantaneouslyb) The branching:
during the time interva[t,t+dt], the following branching
processes take placg) A particle with coordinategposition
and velocity (x,c) produces with probabilityp(1—q)dt a
pair of particles with coordinates<- o,c) and (x,c); (i) A
particle with coordinatesx,c) produces with probability
pgdt a pair of particles with coordinatex{ o,—c) and
(x,c); (iii) A particle with coordinates x,—c) produces
with probability p(1—q)dt a pair of particles with coordi-
nates k,—c) and x+o,—c); (iv) A particle with coordi-
nates K, —c) produces with probabilitpqdt a pair of par-

(d¢+cady)pr(X,Cit)=—2cp,(X,C;X+0o,—C;t)+pq

+ p(l—q)( p1(x+o,c;t)—
and

(dy=Cdy) pa(X,—C;t) = —2Cp,(X,C;X+ 0, —C;t) +pq

v="=*

est neighbors was derived as a rigorous consequence of the
dynamics of ballistic annihilatiof5,6]. This equation com-
pletely described the evolution of the system when initially
higher-order conditional distributions factorized into prod-
ucts of two-particle ones. It was then possible to extract ex-
actly and analytically the long time behavior of the particle
density for several velocity distributions. Unfortunately, this
property is no longer valid in the case with branching. Hav-
ing not been able to find an observable in which one is able
to reproduce this exact closure, one has to face the usual
problem of dealing with a complete hierarchy of coupled
equationg 14]. It seems thus hopeless to find an exact ana-
Iytical solution to these equations. Accordingly we shall only
write the equation for the one-particle density distribution
p1(X,v;t). In Sec. lll, this equation will be solved using a
mean-field approximation.

A careful bookkeeping of the possible dynamical pro-
cesses leads to the following equations:

pr(x—a,—Cci)— X fdypz(x—cr,—c;ery,v,t))
v==*c JO

f:dypz(x_y.v;x‘f’mC;t)), 2

pr(x+o,—c;)— X, Udypz(x—y,v;Ho,c;t))
v==*c JO

+ p(l_q)(Pl(X_Ur_C;t)_v;C f:dypz(x—o,—c;xw,v;t)), 3

wherep,(X1,v1;X2,02;t) is the joint two-particle density to a particle of velocity—c, at positionx— o, giving birth to a

find a particle in the statex¢,v,) simultaneously with an-
other in the statex;,v,) at timet.

particle of velocity+ c at positionx. This is only possible if
no other particles are present in the interpalx+ o] (oth-

The right-hand side of Eq2) can be interpreted in the erwise there will be an overlap between two partickssd it
following way: the first term describes the annihilation of a happens with the ratpq. Finally, the third term describes
particle (x,c) with a particle of opposite velocity. It is given the creation with ratgp(1—q) of a particle whose mother
by the product of the density of a collision configuration has the same velocity. The same restriction as in the previous
[ops(X,C;x+a,—c,t)] with the frequency of such an en- case applies.

counter (Z/0). The second term describes the branching of

One can in principle write the equation of motion foy
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along the same lines. However, we shall not give here this

cumbersome equation, as we are not going to use it.

For simplicity, we shall only consider a spatially homo-
geneous system. We can thus wiitgx,v;t) =p4(v,t) and
P2(X1,01:X2,02;t)=pa(X1—X5,01;05;1). Introducing
then the observabl& (t)=p;(c,t)—p1(—c,t), one easily
shows that it is an exactly conserved quantity whgn
=1/2. This feature reflects the particular choice of rule,
which is precisely symmetric wheg=1/2. As a conse-

guence, one expects our model to exhibit a particular behav-

ior at this point.

[lI. MEAN-FIELD ANALYSIS

A first attempt to obtain information about our model is to
apply a mean-field approximation on Ed8) and (3). One
then assumes the following factorization:

P2(X1,01:X2,02;1) =p1(Xg,01;0) p1(Xz,02;1)
(4)

(the last equality holds for a spatially homogeneous system
It is then suitable to introduce in addition to the variable
¥ the second variable,

:pl(vlrt)pl(UZ!t)

¢(t)EP1(C1t)+P1(_Cvt) (5)
Equations(2) and(3) lead to
E=p(1—a<1>)c1>—c(c1>2—\1f2) (6)
and
dwv
Ezp(l—Zq)(l—UQD)\If. (7)
The formal solution of this last equation is
\P(t)z\lf(O)eX;{p(l—Zq)(t—afthCI)(T)) , (8
0

As before, one sees that the valyre 1/2 plays a special role.
Indeed, two regimes have to be distinguished.

(i) For 0=<qg<1/2: the exponential term diverges unless
(1—0®P)—0 ast—o. Thus a possible stationary solution is

9

In the particular casgq=0, the time-dependent solution can
be obtained explicitly as shown in the Appendix. For
—o0, one recovers the above stationary solution.

(i) For 1/2<qg=<1: in this case, a possible stationary so-
lution is

1
v,=0, (Ds=;(1+c/po)*1. (10

It is straightforward to verify that the above stationary solu-
tions are stable and are approached exponentially in time.
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FIG. 1. Mean-field phase diagram: the stationary value of the
averaged densityp is plotted against| for a fixed value ofp.

Moreover, wherg=1/2 the complete time dependent so-
lution can be obtained. From Ed7), one indeed finds
V¥ (t)=const=¥,, and thus Eq(6) becomes

dd

E=p®—(c+pa)®2+c‘l'2, (12)

whose solution reads

3 p vA cosiAt) +A(c+ po)sinh(At)
(D(t)_2(0+pa) A coshAt) + y(c+ po)sinh(At)
(12
with A=p2/4+C(C+p0')‘If(2) and y=®(0)—p/[2(c

+po)]. The stationary state is then given #,=¥, and

D(q=1/2)=[p+\p?+4c(c+po)¥3l/(c+pa).
(13

Here again, one sees from Ed.2) that the steady state is
approached in an exponential way. As already nolet) is
an exactly conserved quantity fqe=1/2.

The mean-field stationary phase diagram is shown in Fig.
1. The stationary valu®g is plotted againsy for a fixed
value of p#0. The interesting feature is the presence of a
gapA(p) for q=1/2 given by

(14)

1
Alp)= o 1= 1+c/po)'
A(p) decreases ag increases. When<1/2, &,=1/o for
all values ofp (completely filled statg while for q>1/2, &4
increases monotonically with. The dependence is linear for
small p, but®,—1/o whenp—oo.

IV. NUMERICAL SIMULATIONS

In view of the situation whemp=0 [1,2,5], one can an-
ticipate that the fluctuations will also play an important role
in the case with branching. One way to deal with the com-
plete problem, including fluctuations, is to perform numeri-
cal simulations.

The simulations were performed for a one-dimensional
periodic lattice with typically 27 sites. The velocity of each
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particle was drawn from a symmetric bimodal distribution.
However, on computational grounds, the particle velocities
were chosen to be (©,) (with ¢’>0). The results for our
model defined in Sec. Il can be recovered by performing a
simple Galilean transformation and setticyg ¢'/2. The par-
ticle sizeo is the lattice spacing and the discretized time step
is given byr=o/c’.

The algorithm used to simulate the dynamics is the fol-
lowing. During one time stepr, the following three pro-
cesses occur sequentially.

(1) Ballistic motion: independent of the occupation state
of the sites, the particles with velocity move one site to
the right.

(2) Annihilation: two particles located on the same site
disappear.

(3) Branching: for each remaining particle, one draws
two random numbers,, andr ;, uniformly distributed in the
interval [0,1]. One offspring particle is added to the left
(right) nearest neighbor of a particle with velocity (0) if 0.0

the site is empty and if, is less than a given valup.

Hence,p is the probability of branching. This new particle i . _ .

takes the velocity of its mother with a certain probability 1 ~ FIG- 2. Time evolution of the particle density®(t) as a func-
—q, i.e., ifre>q (and the other velocity otherwigelf two  tion of timet for g=0.1 and several values gt

particles are created on the same sttaus born from two

different mothery they annihilate instantaneously. As in the mean-field approach and as expected from the
last remark of Sec. I, the valug=1/2 turns out to play a

particular role and three regimes have to be distinguished.
For each of the above steps, the sites were updated simulta-
neously. The simulations were run on a Connection Machine (i) For 0<q<1/2: The time evolution of the particle den-
CM-200 and the data averaged over 10 independent realizaity ®(t) is shown in Fig. 2 for several values pf Clearly,
tions. The mean initial density for all the simulations wasthe system reaches a stationary sthte= 1/o in agreement
0.5, with, on average, the same densities of both kinds ofvith the mean-field prediction. However, as shown in Fig. 3,
particles. We have also shown that our results obtained for the stationary state is approacheddas- ®(t)~t~*2 This
lattice of 217 sites were free of finite-size effects. power law is established after a crossover time roughly pro-

Note that when a particle branches, it can create at mogiortional to 1p.

one particle during a time step. As a consequence, this
limits the value ofp that can be explored through the simu-

lations. Indeed, the branching ratés related toE via

od(r)

0 20000 40000 60000 80000 100000
tt

p=pr. (15

Thus using the definition of andc’, one finds

5
=]
po—_ ~ Im
—=2%. (16) &

P being a probability, the adimensional branching fadec
can only take values between 0 and 2.

We can now discuss the numerical data obtained using the
above algorithm. Two kinds of quantities have been investi-
gated: first, the time-dependent density with particular em- 10 10 0 10 0
phasis on the stationary states and the way these stationary
states are approached; second, a more microscopic quantity,
namely the time-dependent cluster-size distribufgh,t) in FIG. 3. 0®s—o®(t) versust in a double logarithmic scale, for
the system and some of its moments. These quantities are=0.1 and several values @f For comparison, the full line rep-
well suited to describe the coarsening process present in thiesentd 2 This decay is established after a crossover time which
system. behaves as/p.

[k
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FIG. 4. Time evolution of the particle density® (t) as a func-
tion of timet for q=0.9 and several values @f. The stationary
state is reached after a time of orderrif.

FIG. 6. Semilogarithmic plot obr®(t) —o® versust for q

=0.9 andp=0.01. The exponential approach towards the steady
state is established faf7=250.

(i) For 1/2<g=<1: The time evolution of the particle the stationary state is approached in an exponential way ac-

density®(t) is shown in Fig. 4 for several values f)f As  cording tO(I)S—CID(t)~eXp(—ATJt), whereA may depend on
depicted in Fig. 5, the stationary value of the density dependg.

both onp andq. Forp<0.1, it is well fitted by (iii ) The limit caseq=1/2 is more difficult to investigate
due to the slow decay towards the stationary state. In fact for
P>0.3, there is evidence that the stationary state is com-
pletely filled, i.e., ®;=1/c. For smaller values op the
simulations do not allow us to draw any conclusions, as
shown in Fig. 7. Nevertheless, fay<<1/2, one has®q

®(p,q)~p exp(0.554). (17

Moreover, forp large enoughb is not increasing monotoni-
cally as a function ofp, but &, exhibits a maximum and
then slightly decreases gsincreases. As shown in Fig. 6,

qg=05
10° oD OCOIm O OO O COmID
10° Cé@) o s JR—
e
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©g=08 é i
aqg=07 M ngﬂwm
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FIG. 7. Time evolution of the particle densityd(t) as a func-
tion of timet for q=0.5 and several values gf For small values

of p (less than 0.8 we are unable to extract the steady-state den-
sity, for CPU reasons.

FIG. 5. The stationary values of the averaged densiby are

plotted againsp, for several values aj>1/2, obtained by numeri-
cal simulations.
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FIG. 9. Scaling form of the cluster-size distribution for
=0.79=0.1. P(I,t)t* is plotted versust # for =1 and 8
=0.5.

tion of the time-dependent cluster-size distributi(i,t). In
the domain Bsq<1/2, where coarsening is observed, one

¢ ,‘,W /

,A%{ / s et expectq 15] that P(l,t) will obey a scaling form:
PR P(1,t)~t“TI(It ), (18

FIG. 8. Time evolutior(vertical axeyof the configurations for a In Fig. 9, we plot the scaling function obtained by the col-

chain of 512 sitegthe initial density is approximately one-hpéind ~ lapse of the data fop=0.7g=0.1, with a=1 and B
for 1024 time iterations. The white pixels indicate sites without = 0-5. Although the plot is very noisy, one still notes that the
particle, the gray ones sites with a particle towards the right, and thécaling functionII(z) has a very particular shape, with a
black ones sites with a particle moving towards the Ieft.is for ~ sharp maximum ag=z.,,. The value ofz,,, increases
P=0.7 andq=0.9, while(b) is for p=0.7 andg=0.1. S'%ley with g, going from 0.4 forq=0.1 to 1.2 forq

A better way to extract the exponentsand 3 is to con-

=1/ for all values ofp while for q>1/2, Eq.(17) shows  giqer thenth-order moments of the distribution defined as

that, at least for smap, ®¢# 1/o. Thus for smalp, ® has

a jump atg=1/2, and we believe that such a jump will be “ i
present for all finite values gb. ” dH?p(l,t)
We can now consider the properties of the clusters present (IM=— , (19
in the system at a given time. The qualitative situation is well f dl P(I,t)
illustrated by the two snapshots in Fig. 8. They represent the o

time evolution of a 512-site system during 1024 iterations. . i .
Moreover, a change of reference frame has been performédhich according to the scaling form given by E8) should
such that the particle velocities appear to-be. Depending Pehave as
on g, one observes totally different pictures. In the case (1M~ tn =B
P=0.70=0.1[Fig. 8@], large clustergof similar particles '
are present. They are separated by two types of interfaceghile
vertical onegwhich are stableand rough ones. The dynam-
ics of the system is totally governed by the random walks of
the rough interfaces. During the time evolution, one rough J
interface may collide with a stable interface leading to the
coalescence of two clusters into a large one. In the casghus, the above two relations allow us to determine the ex-
P=0.70=0.9[Fig. 8b)], the sizes of the clusters are rather ponentsa and 8. The values ofa, for n=1, ... ,6 are
small and there are no stable interfaces. The dynamics is ofghown on Fig. 10 fop=0.7, g=0.1. A good fit is obtained
different type. for $=0.48+0.02 anda=0.96+0.04, in very good agree-

A more quantitative description is given by the investiga-ment with our collapsed plot. By repeating our analysis for

(20

mdl P(l,t)~t a*h, (22)

o
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0 (6 2 4 6 FIG. 11. Scaling form of the cluster-size distribution fpr

n =0.79=0.5. P(I,t)t*3is plotted versus$ in a double logarithmic
scale. The full line represents %,
FIG. 10. Exponentx, (open circleg of the nth moment of the

cluster distribution function fom=0, ..., 6 andp=0.79=0.1.

o ) fluence on the dynamics of nonequilibrium statistical sys-
The line is the fita,=0.01+ 0.4&n.

tems. Accordingly, one may expect that the dynamicgjin
=1/2 is particular.

In view of the scaling properties of the problem, it may be
useful to think about it in terms of a dynamical renormaliza-
tion group. Based on the results of both the mean-field ap-
proximation and the numerical simulations, one is led to con-

=2.82, andag=3.40. These exponents are of the foap | : PN .

B S ) ; ! jecture the presence of three fixed points in this system: an
=—0.26+0.61n which is not compatible with the refation ,qiape “critical” fixed point atg=1/2 and two attractive
(20). This probably shows that the simulations have not yetrixed points atg=0 andq=1

rgached the trl_Je asymptotic regime. Moreover, as shown in Wheng<1/2, the branching processes favors the appari-
Fig. 11,P(l.1) is of the form tion of a pair of consecutive particles with the same veloci-
ties and the dynamics is governed by the attractive fixed
point atq=0. Large particle clusters with opposite velocities
are formed during the time evolution and two kinds of inter-
faces are present in the syst¢see Fig. 8)]. First, let us
consider the interface between two clusters of colliding par-
ticles and call this type of interfadg. Such an interface has
very long life. Indeed, the probability that a vacancy

other values of] (namely, 0.2, 0.3, and 0.4the same values
for the exponents fit reasonably well the data.

For g=1/2, the different moments of the cluster-size dis-
tribution area;=0.33, a»=0.96, a3=1.60, @,=2.22, a5

P(l,t)~t~ Y3 =48 (22)

over two decades in the variadleNote that Eq(22) cannot
be valid for arbitrarily largel, because the moments of
P(l,t) diverge with the upper limit of integration.
Finally, in the domain 1/2 g=<1, where no coarsening is
b d, th t h idly its stati e
observe © System approachies wery rapicly 1s alOnagresent at one of the extremities of a cluster of size

state and no dynamical scaling has been found for the clust i .
traverses the cluster and perturbates the interface is of the

distribution. However, in the stationary state, the cluster dis- L . . .
tribution takes the form order of (1-p)"-. Thus, an interfacé; is very stable in the

long time limit where the system is made up of large clus-

P(1)=C,exp(—C,l), (23)  ters. The second type of interface, called separates non-
colliding clusters. Thus it does not necessarily have a one-
whereC, andC, are two constants. site extension, but it can be wider. Hence, its behavior is

more subtle. Three different regimes may be considered. The
simplest case to discuss is whpa/c>1. In this case, the
interfacel, is typically formed by only one empty lattice
site, whose dynamics is diffusive. Indeed, one can show that
The first interesting point is the particular role played byboth boundaries of an interfade perform a Brownian mo-
the valueq=1/2. As already mentioned in Sec. Il, for  tion. Moreover, wherpa/c>1, this random walk is biased,
=1/2, one notes the presence of an extra conservation law o that both boundaries tend to come closer together. For
the system. The difference between the average local densigufficiently long time, the initial gap separating two noncol-
of particles with positive and negative velocities is strictly liding clusters will shrink to one single site, which will per-
zero. It is well known that conservation law has a great inform a random walk. Eventually, this hole will encounter an

V. INTERPRETATION OF THE RESULTS
AND CONCLUSIONS
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gap whermg# 0, or through the coalescence of two interfaces.
Thus the previous argument holds. Finally, whas/c<1, APPENDIX
the situation is similar: although the boundariesl gfper- ) ) . o .
form a biased random walk which tends to increase the sepa- !N this Appendix, we give an explicit solution to the
ration between the two noncolliding clusters, the coalescenc@&an-field equationts) and(6) for the case=0. Equations
of two interfaces or a creation of a new cluster inside the gapy>) @1d(6) lead to
(if q#0) will fill up this space in a more efficient way.
Eventually, the stationary state is completely filled, only dd
one cluster remains and the annihilation process is no longer V——b—=—cV(P?—V¥?), (A1)
in effect. For values ofg not too far from 1/2, this dt dt
asymptotic behavior will shows up only for very long times.
Accordingly, the results of théfinite time) numerical simu-
lations may still be affected by the properties of the critical
fixed point atq=1/2, and the dynamics will exhibit some
crossover behavior. d/d P\ 2
In the situationg>1/2, a majority of pairs of particles &(@) (@) —1} (A2)
with opposite velocities are created during branching. Due to
the annihilation processes, those particles will prevent theet us introducey(t) = ®(t)/¥(t). Equation(A2) becomes
formation of large clusters of particles. One may anticipate
that the long time dynamics is governed by the other attrac-
tive fixed point corresponding tq=1. The dynamics is no 1 d
longer governed by the coarsening mechanism but only by 2_1 atX- —cv, (A3)
the dynamics of small clusters, hence féstponential-like
relaxation occurs. Depending upon the valugothere isa  \ynhose solution is
more or less important fraction of empty sit@s holes into
the system. The presence of these two different dynamical
regimes explains the jump observed in the stationary density t
atq=1/2. 1+X(O)+[X(O)—1]exr(—Cfoll/(T)dT)
This paper shows once again that the mean-field results  x(t)= : .
generally do not hold for low-dimensional systems. Whereas 1+ x(0)—[x(0)— 1]ex;{ _CJ \F(r)dr)
the mean-field approximation predicts the exact critical value 0
for g (because the mean-field equation Bris exact when (A4)
g=1/2) and theright stationary value of the density when
g<1/2, itis unable to give satisfactory results for the densityIf ¥(0)==1, theny(t)==1 and one findsk (t)= =+ d(t)
stationary value fog>1/2 (see Figs. 1 and)5Unsurpris- ¢, 4 times, where (t) obeys
ingly, the mean-field approximation is also unable to predict
the power-law approach to the stationary state wien
<1/2, which is obviously governed by fluctuations. More
surprisingly, its prediction of an exponentially fast approach ot~ PV, (A5)
towards the steady state whgi»1/2 is (qualitatively well
verified. However, to better understand this problem, it
would be useful to be able to find an exact analytical solutionyhose solution is
at least for the three fixed-point cases<0, 1/2, and 1 for
arbitrary values ofp) as a support to the above qualitative
picture. Unfortunately, we were not able until now to find Y(t) l=*+o+exp —pt)[¥(0) 1Fo]. (AB6)
such exact solutions.
In conclusion, one sees that this simple BBA problem
with one offspring exhibits already a very rich behavior. TheNote that in these particular cases, only particles with veloc-
case with two or more offsprings is a completely open quesity +c¢ (or —c) are present in the system at all times.
tion. If x(0)#1, one finds

By multiplying Eq. (A1) by ¥ 2, one finds

=—c¥
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t
1+ x(0)+[x(0)— 1]exp< —Cfo‘lf(r)d'i')

dv
Ezp(l—(ﬂb)\l’:p 1- oV ¥, (A?)

1+ x(0)—[x(0)— 1]ex;{ —CJ'Ot\If(T)dT

As |P(t)] is a nondecreasing function of time, wher «, the square brackets in EGA7) approach+1 depending on the
sign of x(0). Thus, Eq.(A7) reduces to Eq(A5).
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